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A Raylei gh-Ri!z Determination of U pper and Lower Bounds

for the Deflection of Orthotropic Cantilever Beams

by
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Department of Applied Mechanics and Eng ineering Sciences
UNIVERSITY OF CALIFORNIA , SAN DI EGO
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ABSTRACT

A numerical scheme based on polynomial approximation is

presented for the calculation of upper and lower bounds for the flexibility

coefficient of end-loaded orthotrop ic cantilever beam s in a state of plane

stress, through use of the principles of minimum potential energy  and

of minimum complementary energy. The d e g r e e - o f - f r e e d o m  of the two-

dimensional polynomials employed along with the elastic constants and

the depth-to-span ratio of the beam are external pa ramete r s  of the

problem.
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A Rayleigh -R i t z  Dcterminat ion of Uppe r ari d Lower Bound s

for the Defle ction of Or th ot rop ic Cantile ve r Beams

by

S. Na ir

INTRODUCTION

A formulation of the problem of the end-loaded cantilver beam ,

which makes it possible to obtain upper and lower bounds for  the flexibility

coefficient through the use of the principles of minimum potential energy

and of minimum complementary energy, has been repor ted ear l ier  r i ] .

A later work [2] contains improved bounds obtained through the use of

arbitrary functions of the axial coordinate in the assumed admissible

expressions for displacements and s t resses  in the calculation of the energy

functionals. Although these improved bounds provide reliable correc t ions

to the elementary theory flexibility coefficient when the pa r ame te r  ~

E G/~1EE is not too large , the d i f f e r e n c e s  between the bounds becomes
Y

signi ficant for large values of ~~~~.

In what follows we use a Ray lei gh-Ri tz  p rocedure  in conjunction with

• the Lagrange multiplier method to improve the boun ds obtained in [2 ] .

We approximate the displacement components in the potential energy

calculations and the stres s components in the complementary  energy calcu--

lations by polynomials in the coordinate variables.  The coeff ic ient s in

these polynomials are obtained by solving the simultaneous al gebraic

equations which result upon extremizing the energy fun ctionals subject to

the constraint conditions on these polynomials.
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Numerical  re sults obtained employ ing s i x t h - deg r e e  pol ynomials  in

two variables show that for isotropic beams when  v = 1 /3 , and the

depth-to-length ratio is as high as 0.6 the maximum erro r in using the

average value of the bounds instead of the actual value of the flexibility

L : coefficient is less than 0. 3%. Using pol ynomials of the same degree  for

orthotropic beam s this e r ror  comes out to be less than 1% when v = 1/ 2

and p = 100 for all depth-to-span ratios.

FORMULATION

We briefly restate the problem of the end-loaded or thot ropic beam

as formulated in [1]. The inequality for the flexibility coefficient  C reads

V2 
_ _‘C ’  , ( 1)

21 2 1
d s

where V is the prescribed uniform end deflection and

c a E u 2 + 2i.’E  ~ ~~ + E s r 2 
2

= 

~~ 

~x rn •X . .Y Y ‘Y + G (
~ 

+ 

~ ~ dxdy , (2)

‘~ 2

= V5~~~~(0 ,y ) dy 
~ {C SJ~~ 

- 

~~~~~~~~ 
+ + ~fr ~~dxdy , (3)

with 2c and a rep resenting , r espectively, the depth and the length of

the beam, and with E = ~/EEm y

In equation (2) ,  ~ and v a re  assumed axial and la tera l  disp lace-

ment components which are  di f ferent iable  functions satisf ying the disp lace-

rnent boundary conditions

~ (a, y) = ~ (a , y) = 0 , ~ (0 , y) = - V • (4)
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and in equation (3) a and r are  s t ress  components which satisfy the

equilibrium equations
• ._• a...a + i ~ 0 , 0 + T  0 , (5)x , x ,y  y ,y

and the s tress  boundary conditions

~~(x, *c) = 
~ 

(x , ± c )  = ~~~(0 , y) = 0 • (6)

In what follows, we obtain upper and lower bounds for C by

maximizing 1 and by minimizing i~ over a suitably res t r ic ted  class

of polynomials.

UPP ER BOUND CALCULATION

We introduce the dimensionless quantiti es

x C
• ~~~~~= —  , ‘ 7 =  p = —  , (7)a c a

~~ 
~~~~
‘ ~ y ) = 

VEp ~~ ~~~~~
‘ ~

) ‘ 
(8)

(9)
• m

and have therewith, from (3), that I = V2 E p 3 1 , where
8 S

I = 2 f r (0 , ?7) d?7 - $ $~~~~G
2 - .2 vpA 2 

~~~ 
+ ~~ A4 + A 2 ~~~ 

~ dEd :

We satisfy the equilibrium equations (5) identically by writing

= F~~~ • = -F ~~~~ 
~ 

= F~~~ ~ ( I I )

I-
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and assume F in the form

M N
F = E E Amn 

~m Zn- I  
, (12 )

m= l  n= 1

where the A are a rb i tra ry  constant s , except for the r e l a t ion s
mn

~~ (Zn -  l)A = 0 , m =  1 , 2, ..., M , ( 1 3 )

n=1

N
E Amn = 0 , m = 2 , 3, ... , M ., (14)
n=1

which result upon satisfying the s t ress  boundary conditions ~r = a = 0

at ?7 = ± 1 , with the condition 0 for ~ 0 being satisfied auto-

rnatically.

Extremization of I
s 

with respect to the A
rnn~ 

subject to the con-

straint relations ( 1 3) and (14) ,  is accomplished as follows.

We define a quantity 1 by

1 * = I + Z E  B ( E  A )  + Z
m~~l 

C (  
~~~ 

(Zn - I )  
A )

(15)

with B and Cm being Lagrange multipl iers.

Setting 61 * = 0 , we obtain

M N ~~

~~~ ~ 
{ 
~~~ 

+ ZB
k 

+ 2C
k

(2t - 1)~ 6Ak t  = 0 , (16)

where B
~ 

= 0 , in view of the form of (15) .  From this we have f u r th e r ,
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k = 1 , . . . , M

2 ~A + Bk + ( 2 t _  l ) C
k = 0 , B

~~= 0 , . V 7 )
Ic t. t.= I .  N

Equations (17),  together with (13)  and (14) ,  r epresen t  a system of

equations of just the ri ght number to determine the unknown constants

A , B and C
mu m m

We next obtain an expression for  I in terms of the coeff icients
s max

AkL
. To do this we make use of the fact that we may set bA

k~ 
= A1~~ in

equation (16) and write,  using equations ( 1 3 )  and ( 1 4 ) ,

S 
k= 1 t = l  

~~~~~~~~~ 0 . (18)

Considering the linear and quadrat ic  terms presen t  in equation ( 1 0 ) .

we may deduce from (10) in conjunction with (18)  that

max = ~ ~~ dt~ . ( 19)

With r from (11) and (12), this becomes

N
a I = -~~~~~~~ A . (2 0)

s max In
n= 1

We introduce the associated I on the right of equation ( I ) ,  and
s max

therewith obtain the upper bound formula

CU 
_ _ _ _ _ _ _

~~~n = I  
A 1 

(2 1)

where C0 
is the elementary-theory flexibili ty coeff ic ient  1 /2  Ep 3.

5



-. ~~~~~~~

It remains to wri te  the system (17)  explicit l y. To do this we

introduce 
~~~~~~~

‘ T , and 0 from equations ( 1 1 )  and ( 1 2 )  into equation ( 10 )

for I and carry out the differentiat ions with respect  to A.kt  and the

integrations with respect  to ~ and ~7. In this way equation ( 17)  becomes

• M N ç (Zn - I )  (Zn - 2) (2~ - 1) (2~ - 2)

~ ( m + k + 1 ) ( 2 n + Z ~~ - 5 )
rn= 1 n= 1 ‘~

(Zn - 1) (Zn - 2) k ( k  - 1) + ( 2k ,  - 1) ( 2 t  - 2) m (m  - 1)
- (m + k - 1) (Zn + ~~ - 3)

+ 2
~~

4 ink ( r n - i )  (k- I) 
+ ~~2 m k (Zn -  1) ( Z -~~~ i~p ( m + k - 3 ) ( Z n + Z ~~- 1)  ( m + k - 1 ) ( Z n + 2 . t - 3 ) j  inn

k = 1 , 2 M
- Bk - (U - I )  C

k + 6
~t~k = 0 , , (22)

again with B 1 = 0.

Setting k = 1 , t = 1 in equation (22 ) ,  we may sum the series which

occurs in (21 ) ,  as

N C - i

~~~ 

A 1 = , (23)

and this enables us to wri te  equation (21)  in the final  form

C~~ A2
c - i - c  . (24)

0 1

It remains to solve (2 2 ) ,  ( 1  3), and (14) in o rde r  to ob ta in  the  value

of the Lag range  rnu lt ip l ic ’rs  c~r.,.
We note that for M = 1 , N = 2, the above procedure gives

a

~

. .~~~~~~~~~~~ ..--- -~~~~~~~~~~~~~~~ -~~~~



C
e/C = I + 6A2/ 5 which coincides , as it must , with a previously

obtained upper bound [i].

LOWER BOUND CALCULATION

introducing the riondimensional disp lacements

(25)

we write V2 E p3i~ where

S ‘d 
= S S  { (

~~ 
+ ~~~~~~~~~~~~~~~~~~~~~ 

~
2 x4 ~ ~~~~~(;~~~~

± ) 2 } d~~~
d ’7 .

( 26)

Expressions for  dispicemerits  are now assume d in the f o r m

M N M ’ N ’
V = ~~ a (1~~~~)m~~2~~~ 2 , u = ~~~ b ( l ~~~~) in ?,

2fl
~~

l
~

m= 1 n = l  rn =I  n = 1
a (27)

where, since v (0 , 77) - 1 , we have the constraint condition

M
a + 6 = 0 • n = 1, 2, ... , N . (28)• mn In

m=1

• We obtain a and b by minimizing I with respect to thesemn mu d

coefficients , subject to (28) ,  that is by extrernizing

N / M
= + 2 ~~~ c ( ~ ~~~ 

a + 6
1n ) ~ (29)

n= 1 rn= 1

with the c being Lagrange multipl iers.



Setting ÔI
d
* - 0 gives

M N ~ I M ’ N ’ ~ I

~~~i ~~~i 
{ ~~~~~ 

+ 2c~, } öa k~ 
+ 

~~~~~ 
ôb k~ 

= 0 . (30)

Equating the coefficient of each ôa k~, and ôb
k~ 

in (30)  equal to

zero , we obtain the equations

I ~~~d k = 1, 2 , ... , M
— + c  0 , , ( 3 1 )
2 

~~
ak~ ~, = 1 , 2 , . . . , N

~ ~~~d 
= 

k = 1 , 2 , ... , M ’ 
( 32)

2 bk~, .t =  1 , 2 , ..., N ’

which, togeth er with (28), allow the determination of the unknown cons tants

a , b a n d c .mn mu n

We next obtain an expression for  I . f i r s t  in t e r m s  of the co-d mm

efficients a and ultimately in terms of c alone. To do this , we makeinn 1

use of the fact that we may set in equation (30) öa k~ 
= ak~, and ôb k~ 

=

and write

M N ~ I M ’ N ’ ~~I M N
d ak t + E E 

~b 
d bk ~ + 2 ~~ c~ ak ~ 

= 0
k = 1 ( = 1  2k t  k = l  t.= 1 k~.. k = 1  •t= i 33

Since t
d 

is a quadrat ic  form , the f i r s t  two t e rms  in (33)  add up to

21 - and we have then
d ruin

d min = - 
k I  ~~ l 

c (,ak~, 
. (34)

8
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Equation (34) gives wi th the aid of the cons t ra in t  equations (28) ,

1~ • c , (35)d mmn

which, in connection with equation ( 1 ) ,  g ives  t he lowe r bound

fo rmula

CL
= . (36)C c

0 1

It remains to wri te  equat ions  (3 1 )  ari d (32 )  in exp l i c i t f o r m . We

accomplish this by introducing u and v f rom (27)  into the equation (26),

and by ca r rying out the di f ferent ia t ions  with r e spec t  to a
kt  and b

k~,
as well as the in tegra t ions  with respect  to and ~ . T h i s  g iv e s

M ’ N ’ 
~ A2 ink (Zn - 1 )  (2~~- I )) 
~~~~ (m+k- 1) (2n+2~~- 1) 

+ 
(m+k+ 1) ( 2 n + 2 ~~- 3 )  ~ 

b
mn• m= i n=I ‘~

- 

~~~~i n~~ 
{ v  + m (2~~-1)} (m+k) (2n+2~~-3) 

= 0 ,

(37)
for k=  1, 2, ..., M ’ and ~~~ = 1. 2, .• . ,  N’, and

M ’ N ’ b

~~~~ n=l 
m (U - 2)  + k ( 2 n - I ) ~~ ( m + k ) ( 2 n + 2 L - 3 )

M N ~ 
— (2n -2) (2k- 2)- 

~~~i n~~ ~ ~~ A 2 ( 1 - v2 ) (in + k +  1) ( 2 n 4  Z~~- 5)

+ ( m+ k -  I )  ( 2 n + 2 ~~- 3)~~ 
a = A2 c~ , (38)

for k = 1 , 2 , ... , M and ~
. =  1 , 2, ... , N.
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Equation (37) ,  ( 3 8) and (28)  must  now be solved in o r d e r  to

obtain the value of c
1 

in (36).  Numer ica l  r e su l t s  r epor t ed  in the next

section are obtained by setting M ’ = M - I , N’  = N , so as to have  an

equal number of a - te rms  arid b-te rms in the expe rss io r l s f o r  the shear-

s t ra ins  wh ich , numerical  ev idence  ind ica te s , i s the  mos t  e f f e c t i v e  way

to car ry  out this  work.  We note that  the choice  M = 3, N = I c o r r e s p o n d s

to the “ semi-e lementa ry” pol ynomial  used in the ca l cu l a t i on  of the lower

bound , CL /C O 
= 1 - v2 + ) ~2 E I ~

DISCUSSION
i t

In Table I , values of upper and lower bounds are presented for

isotropic beams when LI = 1/3 , and c/a = 0. 3 and 0. 5, as functions of

the integers M and N representing the number of degrees-of-freedom

of the associated admissible polynomials. The Hu ber t - type  matr ices

involved in the numerical work, require double precision arithmetic in the

solution procedures for large values of M and N. The results show that

in the extreme case of a beam which is as deep as it is long ( c / a

= 0. 5), the maximum percentage e r ro r  in employ ing the mean value of the

present bounds with M = N = 6 , instead of the actual flexibility coeff ic ient

is only 0. 22%.

Numerical values of the upper  and lower bound s obtained for

orthotropic beam s, with the l a rge  value ~i = Cl E = 100 when V

= 1/2 , are plotted against  A /E/G c/a in Figure 1. To obtain a

10
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maximum e r r o r  of less than one percent  it is found n e c e s s ar y  to use

M = N = 6 in both upper and lower bound calculations. These resu l t s

are  represented by the curves u66 and L66. For the sake of comparison ,

we also include the bound curves  U2 and L4 obtained in [2].  The

bounds U 12 and L3 1 a r e  equivalent to the e a r l i e r  r e su l t s  obta ined

in [1]. The bound curves  U66 and L66 show that there is a decrease

in flexibility for  small A. As shown previously in [2] ,  thi s d e c r e a s e  is

due to the end constraint  v = 0 at x = a. The shear  de format ion  e f f e c t s

dominate when A is l a rge  and the flexibil i ty p r o g r e s s i v el y i n c r e a s e s  with

increasing values of A.
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Table 1. Convergence of the bound s for
isotropic beams when V = 1/3 .

c/a = 0. 3 c/a = 0. 5

M , N C IC c IC .
~
. c ic C ICL o U o E r ro r  L o U o E r r o r

3, 3 1. 2070 1. 2805 3 .05  1. 6974 1 . 7 7 16  2 . 1 9

4, 4 1. 2260 1 .2762  2 .05  1.7 188 2 . 7 6 3 2  1. 2 9

5,3 1.2605 1.2754 0.59 1.7447 1 .7674  0 . 6 5

5,4 1. 2618 1 .2734 0 .46  1.7457  1 .7 6 1 1  0 . 4 4

* 5,5 1. 2628 1 .2732 0. 32 1. 7483 1 .7597 0. 33

6 ,6 1.2642 1 .2715  0 . 29  1.750 1 1.758 1  0 . 2 2

c - C
~ % Error  = 

L x 100 .
• L

a.

12
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